PERFORMANCE TEST

OF

PARTITION WALL SYSTEM

USING

WELL & ABLE INTERNATIONAL
BESTA™ HOLLOWCORE PANELS OF 90MM THK.

TESTED WITH REFERENCE TO

BS 5234: Part 2: 1992 or SS 492: 2001

TESTED FOR: Well & Able International Pte Ltd
23 Genting Road
#03-01
Singapore 349481

Attn: Mr Francis Ho

PREPARED BY: Ng Yui Xiong
Associate Engineer

APPROVED BY: Wong Mun Hong
Product Manager
Building Group/Lab tests
Mechanical Centre

The results reported herein have been performed in accordance with the laboratory's terms of accreditation under the Singapore Accreditation Council - Singapore Laboratory Accreditation Scheme. Tests/Calibrations marked "Not SAC-SINGLAS Accredited" in this Report are not included in the SAC-SINGLAS Accreditation Schedule for our laboratory.
SUMMARY

TESTED FOR WELL & ABLE INTERNATIONAL PTE LTD
TEST DATE 31/03/2015 to 01/04/2015
TEST METHOD Reference to BS 5234 Part 2 : 1992 or SS 492 : 2001
TEST DESCRIPTION The purpose of the test is to determine the resistance to damage of partition system for use as internal walls of buildings.

Tests for grade compliance:

Severe Duty (SD) – Prone to vandalism and abnormally rough use.

a. Stiffness
 Severe Duty - Load of 500N applied through an area of 150 mm diameter plate perpendicular to the partition surface. 10 mm maximum deflection allowable and 1 mm maximum residual deformation

b. Small hard body impact
 Impact by a 50 mm diameter steel ball with a swinging arm of 600 mm long (Total weight, 3 kg) swing perpendicularly against the wall. Test on 11 positions (includes a corner). Criteria: no significant damage.
 i. Surface damage
 Severe Duty - Impact energy of 10 Nm (swing angle of 63.6 degree)
 ii. Perforation
 Severe Duty - Impact energy of 30 Nm (swing angle of 131.8 degree)

c. Large soft body impact
 Impact by a 50 kg spherocconical bag of 600 mm X 400 mm diameter filled with hardened glass beads. Test on 3 positions (includes a corner). Criteria: no significant damage.
 i. Resistance to damage
 Severe Duty - Impact energy of 100 Nm (drop height of 204 mm). Single impact at two selected positions and one on corner.
 ii. Resistance to structural damage
 Severe Duty - Impact energy of 120 Nm (drop height of 245 mm). Three impacts at two selected positions.

d. Door slam
 Severe Duty - Partition wall is being slammed 100 times with a 60 kg door leaf by a force of 15 kg. Door frame shall not be permanently displaced by 1mm.
SUMMARY CONT’DS

Other tests:

e. Crowd pressure

A load of 3.0 kN/m is applied through a 2.5 m (± 10 mm) wooden beam at a height of 1.2 m. No damage or collapse that would render the partition dangerous is allowed.

f. Light weight anchorage

A static load is applied on the steel bracket fixed onto the partition wall by a specified type of anchorage. A shim plate supporting a 20 N weight is inserted in between the bracket and wall.

i. Pull out

The anchorage is to sustain a pull out load of 100 N (± 3 N) without releasing the shim plate.

ii. Pull down

The anchorage is to sustain a pull down load of 250 N (± 7.5 N) without releasing the shim plate. The bracket shall not move by more than 2 mm.

g. Heavy weight anchorage

An eccentric cyclic load is applied onto steel brackets fixed onto the partition by a specified type of anchorage. Shim plates supporting a 20 N (± 1N) weight are inserted in between the bracket and wall.

i. Wash basin

A load of 1500N is applied onto the wash basin steel bracket, without releasing either the shim plates, exceeding the deflection of 20 mm or residual deformation of 1 mm.

ii. Wall cupboard

Incremental load step of 500N up to 4000N is applied onto the wall cupboard steel bracket, without releasing either the shim plates, exceeding the deflection of 5 mm or residual deformation of 1 mm.
SUMMARY OF TEST RESULTS:

Summary of strength and robustness tests reference to BS 5234 : Part 2 : 1992 or SS 492: 2001
(Details of partition specimen and test report are attached)

<table>
<thead>
<tr>
<th>Tests for grade compliance</th>
<th>Grade performance achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements tested</td>
<td></td>
</tr>
<tr>
<td>Stiffness</td>
<td>Passed</td>
</tr>
<tr>
<td>Surface damage by small hard body impact :</td>
<td>Tested</td>
</tr>
<tr>
<td>Surface damage by large soft body impact:</td>
<td>Passed</td>
</tr>
<tr>
<td>Perforation by small hard body impact:</td>
<td>Passed</td>
</tr>
<tr>
<td>Resistance to structural damage by large soft body impact:</td>
<td>Passed</td>
</tr>
<tr>
<td>Door slamming</td>
<td>Passed</td>
</tr>
</tbody>
</table>

Note: ¹ - Indicates no specific criterion for acceptance is given because the impact damage will vary with different materials and forms of construction; some surface damage may be acceptable because it can be repaired. See test results photographs on page 13.

Summary of other tests on partition specimen

<table>
<thead>
<tr>
<th>Requirement tested</th>
<th>Performance achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crowd pressure</td>
<td>3 kN/m</td>
</tr>
<tr>
<td>Light weight anchorage – Pull out</td>
<td>100 N</td>
</tr>
<tr>
<td>Light weight anchorage – Pull down</td>
<td>250 N</td>
</tr>
<tr>
<td>Heavy weight anchorage – (Wash basin)</td>
<td>1500 N</td>
</tr>
<tr>
<td>Heavy weight anchorage – (Wall cupboard)</td>
<td>4000 N</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

SUMMARY

1. Introduction Page 6
2. Description of sample Page 6 ~ 7
3. Test standard Page 8
4. Test setup Page 8
5. Description of tests Page 9 ~ 11
 5.1 Partition stiffness
 5.2 Small hard body impact
 5.2.1 Surface damage
 5.2.2 Perforation
 5.3 Large soft body impact
 5.3.1 Resistance to surface damage
 5.3.2 Resistance to structural damage
 5.4 Door slam
 5.5 Crowd pressure
 5.6 Light weight anchorage
 5.6.1 Pull out
 5.6.2 Pull down
 5.7 Heavy weight anchorage
 5.7.1 Wash basin
 5.7.2 Wall cupboard
6. Test results Page 12 ~ 22
 6.1 Partition stiffness
 6.2 Small hard body impact
 6.2.1 Surface damage
 6.2.2 Perforation
 6.3 Large soft body impact
 6.3.1 Resistance to surface damage
 6.3.2 Resistance to structural damage
 6.4 Door slam
 6.5 Crowd pressure
 6.6 Light weight anchorage
 6.6.1 Pull out
 6.6.2 Pull down
 6.7 Heavy weight anchorage
 6.7.1 Wash basin
 6.7.2 Wall cupboard
7. Conclusion Page 23
8. Appendix Page 24 ~ 25
9. Company’ drawing Page 26 ~ 27
1 INTRODUCTION

This document describes the test procedures and reports of the performance of Well & Able International BESTA™ Hollowcore panels of 90mm THK.

2 DESCRIPTION OF SAMPLE

Components used are as follow:

2.1) Panel Dimension: Length: 2760mm, Width: 600mm, Thickness: 90mm

2.2) Compound joint used: GX500 liquid mixed with GX500 powder

2.3) Non-shrink grouting used for infilling of hollow core:

![Figure 1: Non shrink grout used for infilling hollow core](image1)

2.4) Screws used for light weight anchorage – pull out and pull down test

![Figure 2: Screw with plastic anchor used for light weight anchorage tests](image2)
2.5) Screw use for heavyweight anchorage – wash basin and wall cupboard test

![M10 bolt and epoxy for heavy weight anchorage tests](image)

Figure 3: M10 bolt and epoxy used for heavy weight anchorage tests
3. TEST STANDARD

The test is tested with reference to BS 5234: 1992 “Partitions (including matching linings) Part 2: Specification for performance requirements for strength and robustness including methods of test”

SS 492: 2001 test method is equivalent to BS 5234 Part 2 : 1992

4. TEST SETUP

A mock-up test specimen 2760mm width X 4500mm height and a partition junction assembly of a right-angle corner with a return of 900mm was installed onto the test rig for the performance test. All hollow cores were infilled with non shrink grout. Total, 2 sheets of company’s drawings containing the details of the mock-up specimen.

The test specimen includes a door set 900mm width X 2100mm height and a 600mm run of partition flanking at one side of the door set.

It was installed from 16 March 2015 to 18 March 2015. Conditioning of the specimen with reference to SS492:2001 was agreed to be 3 hours after installation was completed in the lab's condition.

Figure 4: Test specimen mock-up
5. DESCRIPTION OF TESTS

The following tests were conducted with reference to 5234 Part 2 : 1992 or SS 492: 2001:

5.1 Partition stiffness

This test is to establish the ability of the partition to withstand people or ladder leaning against the partition wall without causing unacceptable cracking or movement.

A static horizontal load of 500 N (±15 N) was applied through a 150 mm (±1 mm) diameter steel plate with a contact rubber pad of 6 mm (±2 mm) thick. The load was applied to the partition at a height of 1500 mm (±10 mm) from the bottom of the setup. Deflection was taken on the load side at 125 mm above the centre point of load application. A pretest load of 100 N was applied and stabilised for 1 min before unloading. The load was then applied in steps of 100 N until 500 N before unloading. Each loading was maintained for about 2 minutes for stabilisation.

Deflection was taken at the end of the 2 minutes interval. The residual deflection was taken when it had fully stabilized or 1 hour after unloading whichever occurs first.

5.2 Small hard body impact

The test is to simulate impact caused by sharp or pointed objects such as trolleys and wheelchairs. A 3 kg / 50 mm diameter steel sphere impactor was used to simulate a hard body object. It was attached to a 600 mm (±1.0 mm) long swinging arm.

5.2.1 Surface damage

This test is to determine the resistance of the partition to damage from impacts by small, hard body objects.

10 positions on the main wall of the test setup were chosen for the test. Each position was subject to a 10 Nm impact energy. The swinging arm was raised by 0.33 m or an angle of 63.6 degree and released. The rebounce of the steel arm was withheld to prevent it from making a second impact.

The depth of indentation was taken after each impact for a position.

The test was repeated at a corner position 75 mm away from the corner edge.

5.2.2 Perforation

This test is to determine the resistance of the partition to perforation from impacts by small, hard objects.

10 positions on the main wall of the test setup were chosen for the test. Each position was subject to a 30 Nm impact energy. The swinging arm was raised by 1.0 m or 131.8 degree and released. The rebounce of the steel arm was withheld to prevent it from making a second impact. The partition was inspected for any damage or perforation.

The test was repeated at a corner position 75 mm away from the corner edge.
5.3 Large soft body impact

The test is to simulate impact caused by people falling against or any large soft body object such as a ball hitting the partition wall. The impactor is a sphericoconical bag of 600 mm X 400 mm filled with hardened glass beads. It has a total weight of 50 kg (±5 kg).

5.3.1 Resistance to surface damage

Two positions on the partition wall were selected for the test. Each location was subject to a single swinging impact. A linear gauge was placed behind the impacted panel to measure the permanent deformation.

The impact energy was 100 Nm. The impactor was raised by 204 mm before releasing. Permanent deformation was taken after 5 minutes from the impact.

The test was repeated at a corner position 200 mm away from the corner edge.

5.3.2 Resistance to structural damage

Two positions on the partition wall were selected for the test. Each location was subject to three swinging impacts.

The impact energy was 120 Nm. The impactor was raised by 245 mm before releasing. The partition was inspected for any surface or structural damage.

5.4 Door slam

The test simulates a door being forcefully slammed by a person, wind or tensioned door closer.

A 60 kg (±0.5 kg) door leaf was slammed through an opening angle of 60 degrees (±1 degree) with a force of 15 kg (±50 g) for 100 times. Residual deflection was taken on the door frame at 1 m above the bottom of the door leaf after 5 minutes from the last slamming.

5.5 Crowd pressure

This test simulates a uniform band load such as a crowd leaning against the wall.

A test load of 3.0 kN/m was applied through a 2.5 m long wooden beam placed at a height of 1.2 m above the bottom of the wall. Deflection was taken at 125 mm above the beam. Residual deflection was taken after 5 minutes upon released of the load.
5.6 Light weight anchorage

The test determines whether the partition wall can withstand light weight fixtures such as those for wall picture, clothing hook and basic wall shelving. A U-shaped steel bracket was secured by the specified anchorage. A shim plate was placed in between the steel bracket and the wall. A load of 20 N (±1 N) was applied on the shim plate.

5.6.1 Pull out

A pull out load of 100 N (±3 N) perpendiculairs to the wall was applied on the bracket. The load was held for 1 minute before releasing.

5.6.2 Pull down

A pull down load of 250 N (±7.5 N) parallel to the wall was applied on the bracket. The load was held for 1 minute before releasing.

5.7 Heavy weight anchorage - Wall cupboard

The test simulates loading on the partition wall arising from heavy weight fittings such as wash basin and wall cupboard.

5.7.1 Wash basin

A steel bracket identical to a standard wash basin was mounted at a height of 0.8 m (±10 mm). Four deflections were taken, two on each side of the wall, at a height of 1.2 m and 1.75 m from the base of the wall. Shim plates were inserted in between the bracket and wall and loaded with a force of 20 N.

Cyclic load of the following sequence was applied: 500, 750, 500, 750, 500, 750, 500, 1000, 500, 1000, 500, 1250, 500, 1250, 500, 1500, 500, 1500, 500 N. Residual deflections were taken after 5 minutes from unloading.

5.7.2 Wall cupboard

A steel bracket identical to a standard wall cupboard was mounted at a height of 1.5 m (±10 mm). Four deflections were taken, two on each side of the wall, at a height of 1.2 m and 1.75 m from the base of the wall. Shim plates were inserted in between the bracket and wall and loaded with a force of 20 N (±1 N).

Incremental load of the following sequence was applied: 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000 N. Residual deflections were taken after 5 minutes from unloading.
6. TEST RESULTS

6.1 Partition stiffness

Date of test: 31/04/2015
Lab temperature / Humidity: 28.6°C / 75%
Grade tested / load applied: Severe Duty / 500N ± 15 N

<table>
<thead>
<tr>
<th>Load (N)</th>
<th>Duration (min)</th>
<th>Deflection (mm)</th>
<th>Residual Deflection (mm)</th>
<th>Condition of the specimen tested</th>
<th>BS 5234: Pt 2: 1992 or SS 492: 2001 Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretest load of 100 N</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>Passed (No damage occurred)</td>
<td>1) There shall be no damage or detachment, loosening or dislodgement of partition wall’s parts or fixing</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>-0.1</td>
<td>-</td>
<td></td>
<td>2) The Maximum deflection and residual deformation shall not exceed 10 & 1 mm respectively.</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
<td>-0.1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>2</td>
<td>-0.2</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>2</td>
<td>-0.2</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>2</td>
<td>-0.3</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5: Location of applied load for partition stiffness test

2900mm

125 mm

1500 mm

Transducer position
Test load position
6.2 Small hard body impact

6.2.1 Surface damage

Date of test: 31/03/2015
Lab temperature / Humidity: 28.8°C / 78%
Grade tested / Impact Energy: Severe Duty / 10 Nm

<table>
<thead>
<tr>
<th>Impact Position</th>
<th>X (mm)</th>
<th>Y (mm)</th>
<th>Depth of indentation (mm)</th>
<th>Condition of the specimen tested</th>
<th>BS 5234: Pt 2: 1992 or SS 492: 2001 Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2480</td>
<td>390</td>
<td>0.7</td>
<td>Tested</td>
<td>1) No specific criterion for acceptance</td>
</tr>
<tr>
<td>2</td>
<td>2520</td>
<td>390</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2610</td>
<td>390</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2670</td>
<td>390</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2710</td>
<td>400</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2850</td>
<td>400</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2940</td>
<td>410</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3000</td>
<td>410</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3060</td>
<td>410</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3130</td>
<td>410</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>75</td>
<td>240</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: Corner junction

Figure 6: Locations of small hard body impact for surface damages

Figure 7: Surface damage by small hard body impact - closed up view of indentations
6.2.2 Perforation

Date of test: 31/03/2015
Lab temperature / Humidity: 28.8°C / 78%
Grade tested / Impact energy: Severe Duty / 30 Nm

<table>
<thead>
<tr>
<th>Impact Position</th>
<th>X (mm)</th>
<th>Y (mm)</th>
<th>Depth of indentation (mm)</th>
<th>Condition of the specimen tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2300</td>
<td>510</td>
<td>0.9</td>
<td>Tested</td>
</tr>
<tr>
<td>2</td>
<td>2400</td>
<td>510</td>
<td>1.0</td>
<td>1) No detachment, loosening or dislodgement of its parts or fixings occurred.</td>
</tr>
<tr>
<td>3</td>
<td>2500</td>
<td>510</td>
<td>0.7</td>
<td>2) See Fig. 9 photos for closed-up view of surface damage.</td>
</tr>
<tr>
<td>4</td>
<td>2590</td>
<td>510</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2640</td>
<td>510</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2745</td>
<td>510</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2820</td>
<td>510</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2910</td>
<td>510</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2990</td>
<td>510</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3080</td>
<td>510</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>75</td>
<td>370</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

Note: Corner junction

![Figure 8: Locations of small hard body impact for surface damages](image1)

![Figure 9: Perforation by small hard body impact - closed up view of indentations](image2)
6.3 Large soft body impact

6.3.1 Resistance to damage

Date of test: 31/03/2015
Lab temperature / Humidity: 28.8°C / 78%
Grade tested / Impact Energy: Severe Duty / 100 Nm

<table>
<thead>
<tr>
<th>Impact Position</th>
<th>X (mm)</th>
<th>Y(mm)</th>
<th>Residual deflection (mm)</th>
<th>Condition of the specimen tested</th>
<th>BS 5234: Pt 2: 1992 or SS 492: 2001 Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2000</td>
<td>1300</td>
<td>0</td>
<td>Passed (No damage occurred)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3840</td>
<td>1300</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>1400</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note: Corner junction

Figure 10: Locations of large soft body impact for resistance to damage
6.3.2 Resistance to structural damage by multiple impacts

Date of test: 31/03/2015
Lab temperature / Humidity: 28.8°C / 78%
Grade tested / Impact Energy: Severe Duty / 120 Nm

<table>
<thead>
<tr>
<th>Impact Position</th>
<th>X (mm)</th>
<th>Y (mm)</th>
<th>Condition of the specimen tested</th>
<th>BS 5234: Pt 2: 1992 or SS 492: 2001 Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2400</td>
<td>1300</td>
<td>Passed (No damage occurred)</td>
<td>The partition wall shall be capable of withstanding the impact energies, without collapsing or dislocating the partition wall or its fixings.</td>
</tr>
<tr>
<td>2</td>
<td>3000</td>
<td>1300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>**3</td>
<td>200</td>
<td>1300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note: Corner junction

Figure 11: Locations of large soft body impact for resistance to structural damage
6.4 Door Slamming

Date of test: 01/04/2015
Lab temperature / Humidity: 28.8°C / 78%
Grade tested: Severe Duty
Door weight: 60kg ± 0.5 kg

<table>
<thead>
<tr>
<th>Number of slam (Open door to 60 ±10°)</th>
<th>Residual deflection (mm)</th>
<th>Condition of the specimen tested</th>
<th>BS 5234: Pt 2: 1992 or SS 492: 2001 Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretest of 3</td>
<td>0</td>
<td>Passed (No damage Occurred)</td>
<td>1) The partition shall not be damaged, nor shall door frame fittings and architraves become detached or loose after the door leaf has been slammed.</td>
</tr>
<tr>
<td>20</td>
<td>-0.4</td>
<td></td>
<td>2) The closing jamb of the door frame shall not be permanently displaced by more than 3mm as a result of the pre-slam test and by more than 1 mm as a result of the main slam test, from its position at the start of the test, measured at 1.0m above the bottom of the door leaf.</td>
</tr>
<tr>
<td>100</td>
<td>-0.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.5 Crowd Pressure

Date of test: 01/04/2015
Lab temperature / Humidity: 28.6°C / 75%
Load applied: 3.0 kN/m

<table>
<thead>
<tr>
<th>Load</th>
<th>Duration (min)</th>
<th>Deflection (mm)</th>
<th>Residual Deflection (mm)</th>
<th>BS 5234: Pt 2: 1992 or SS 492: 2001 Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretest load of 200 (N)</td>
<td>1</td>
<td>-0.1</td>
<td>0</td>
<td>Passed (No damage occurred)</td>
</tr>
<tr>
<td>3.0 kN/m</td>
<td>2</td>
<td>-3.16</td>
<td>-0.2</td>
<td>There shall be no collapse or damage that would render the partition wall dangerous, due to any of its parts becoming dislodged or shattered, in a manner that could cause injury.</td>
</tr>
</tbody>
</table>

There shall be no collapse or damage that would render the partition wall dangerous, due to any of its parts becoming dislodged or shattered, in a manner that could cause injury.

Figure 12: Locations of applied load for crowd pressure
6.6 Lightweight Anchorage

6.6.1 Pull-out test

Date of test: 01/04/2015
Lab temperature / Humidity: 28.8°C / 78%
Load applied: 100 N ± 3 N

<table>
<thead>
<tr>
<th>Load (N)</th>
<th>Duration (min)</th>
<th>Condition of the specimen tested</th>
<th>BS 5234: Pt 2: 1992 or SS 492: 2001 Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1</td>
<td>Passed</td>
<td>The partition wall shall withstand the axial load without releasing the pull-up shim plate or damaging the partition other than superficial cracking</td>
</tr>
</tbody>
</table>

![Figure 13: Locations of applied load for lightweight anchorage Pull-out test](image-url)

6.6.2 Pull-Down Test

Date of test: 01/04/2015
Lab temperature / Humidity: 28.8°C / 78%
Load applied: 250 N ±3 N

<table>
<thead>
<tr>
<th>Load (N)</th>
<th>Duration (min)</th>
<th>Deflection (mm)</th>
<th>Condition of the specimen tested</th>
<th>BS 5234: Pt 2: 1992 or SS 492: 2001 Requirements</th>
</tr>
</thead>
</table>
| 250 | 1 | 0 | Passed (No damage occurred) | 1) The partition wall shall withstand the transverse load without releasing the pull-up shim plate or damaging the partition other than superficial cracking.
2) The maximum movement of the pull-down bracket shall not exceed 2mm. |

![Test load position](image)

Figure 14: Locations of applied load for lightweight anchorage Pull-down test
6.7 Heavyweight Anchorage

6.7.1 Wash basin

Date of test: 01/04/2015
Lab temperature / Humidity: 28.8°C / 78%
Load applied: 1500 N

<table>
<thead>
<tr>
<th>Load (N)</th>
<th>Time (min)</th>
<th>Deflection (mm)</th>
<th>Residual deflection (mm)</th>
<th>Condition of the specimen tested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Pretest load of 200</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>500</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>750</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>500</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>750</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>500</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>500</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>500</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1250</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>500</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1250</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>500</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1500</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>500</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1500</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

BS 5234: Pt 2: 1992 or SS 492: 2001 Requirements
The anchorages shall be capable of withstanding the load selected applied to the 2 linked brackets without releasing either pull-up shim plate, exceeding 20 mm deflection or 1 mm residual deformation limits and without loosening, detaching or damaging the partition wall.

![Points for measuring deflection](image)

Figure 15: Locations of applied load for heavyweight anchorage (Wash basin) eccentric downward loading test
Wall cupboard

Date of test: 01/04/2015
Lab temperature / Humidity: 28.8°C / 78%
Load applied: 4000 N

<table>
<thead>
<tr>
<th>Load (N)</th>
<th>Time (Min)</th>
<th>Deflection (mm)</th>
<th>Residual deflection (mm)</th>
<th>Condition of the specimen tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretest load of 200</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1500</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>2500</td>
<td>1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>3000</td>
<td>1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>3500</td>
<td>1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>4000</td>
<td>1</td>
<td>0.0</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

BS 5234: Pt 2: 1992 or SS 492: 2001 Requirements

The anchorages shall be capable of withstanding the load selected applied to the 2 linked brackets without releasing either pull-up shim plate, exceeding 5 mm deflection or 1 mm residual deformation limits and without loosening, detaching or damaging the partition wall.

Figure 16: Locations of applied load for heavyweight anchorage
(High level wall cupboard) eccentric downward loading test
CONCLUSION

All test results meets the SEVERE DUTY grade requirements of BS 5234 Part 2: 1992 or SS 492:2001

Well & Able International BESTA™ hollowcore panels of 90mm THK has also achieved the following performance;

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Crowd pressure</td>
<td>3.0 kN/m</td>
</tr>
<tr>
<td>Light weight anchorage – pull out</td>
<td>100 N</td>
</tr>
<tr>
<td>Light weight anchorage – pull down</td>
<td>250 N</td>
</tr>
<tr>
<td>Heavy weight anchorage – wash basin</td>
<td>1500 N</td>
</tr>
<tr>
<td>Heavy weight anchorage – wall cupboard</td>
<td>4000 N</td>
</tr>
</tbody>
</table>

Ng Yui Xiong Wong Mun Hong
Higher Associate Engineer Product Manager
Building Group Mechanical Centre
APPENDIX: TEST SET-UP

Figure 17: Lightweight anchorage- pull-down test

Figure 18: Lightweight anchorage- pull-out test

Figure 19: Heavy weight anchorage wash basin

Figure 20: Door Slam
Figure 21: Crowd Pressure test

Figure 22: Heavy weight anchorage wall cupboard
Please note that this Report is issued under the following terms:

1. This report applies to the sample of the specific product/equipment given at the time of its testing/calibration. The results are not used to indicate or imply that they are applicable to other similar items. In addition, such results must not be used to indicate or imply that TÜV SÜD PSB approves, recommends or endorses the manufacturer, supplier or user of such product/equipment, or that TÜV SÜD PSB in any way “guarantees” the later performance of the product/equipment. Unless otherwise stated in this report, no tests were conducted to determine long term effects of using the specific product/equipment.

2. The sample/s mentioned in this report is/are submitted/supplied/manufactured by the Client. TÜV SÜD PSB therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture, consignment or any information supplied.

3. Nothing in this report shall be interpreted to mean that TÜV SÜD PSB has verified or ascertained any endorsement or marks from any other testing authority or bodies that may be found on that sample.

4. This report shall not be reproduced wholly or in parts and no reference shall be made by the Client to TÜV SÜD PSB or to the report or results furnished by TÜV SÜD PSB in any advertisements or sales promotion.

5. Unless otherwise stated, the tests were carried out in TÜV SÜD PSB Pte Ltd, No.1 Science Park Drive Singapore 118221.

July 2011